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We present a theoretical framework for the discussion of the scaling properties of interfaces advancing
in systems with quenched disorder. In all such systems there are critical conditions at which the inter-
face gains scale invariance for sufficiently slow growth. There are two fundamental concepts, the “block-
ing surfaces” and the “associated processes,” whose nature determines the scaling properties of the ad-
vancing interfaces at criticality. The associated processes define a network whose scaling properties
determine all the exponents (static and dynamic) that characterize the critical growing interface via
universal scaling relations. We point out in this paper that most of the physical rules that can be used to
advance the interface also incorporate noncritical elements; as a result, the roughness exponent of the
growing interface may deviate from that of the critical interface in a rule-dependent way. We illustrate
the wide applicability of the universal scaling relations with diverse models, such as the Edwards-
Wilkinson (EW) model with quenched noise, the random-field Ising model, and the Kardar-Parisi-Zhang
(KPZ) model with quenched noise. It is shown that the last model is characterized by bounded slopes,
whereas in the EW model the slopes are unbounded. This fact makes the KPZ model equivalent to the
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self-organized interface depinning model of Buldyrev and Sneppen.

PACS number(s): 64.60.Ht, 05.40.+j

I. INTRODUCTION

In this paper we discuss the scaling properties of rough
interfaces in physical systems with quenched disorder.
By “rough” we mean interfaces whose width W diverges
with the linear scale of the system like W~ LX, where y
is known as the “roughening exponent.” Examples are
two-fluid flows in porous media [1,2], the invasion of
coffee into a paper [3], or the motion of the interface be-
tween magnetic domains in a spin system with quenched
randomness [4,5]. Recently it has become clear that the
qualitative nature of the advancement of interfaces in sys-
tems with quenched disorder is different from the type of
motion seen under the effect of an external random noise
[3,6,7]. The difference is that the dynamics of the inter-
face h(x,t) is sensitive to a random term that can be
modeled as 7(x,4(x,?)), a term that depends on the posi-
tion of the interface. This difference puts systems with
quenched and external noise in different universality
classes.

The theoretical activity in this subject has received a
significant boost by the introduction of very simple mod-
els that describe the invasion of an interface between two
phases into a medium with quenched disorder. Models
that attracted attention were the models introduced in
Refs. [3-6]. Broadly speaking, the models fall into two
classes. One class deals with discrete space-time and in-
troduces local rules for the advance of an interface. This
class of models is very useful as a template for the intro-
duction of the concepts needed for the discussion of the
scaling properties of the growing interface. One of the
points of this paper is that the same concepts are also ap-
propriate for the discussion of another class of models.
This second class is described by partial differential equa-
tions like
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3h(x,=F (VA (x,0)+q(x,h (x,t)+F ,  (L1)

where xERY, F,(Vh(x,?)) is some (generally nonlinear)
function of the spatial derivatives VA (x,¢), and F is some
force that pushes the interface A (x,t). It turns out that
even the linear model which is known as the Edwards-
Wilkinson model [8],

3,h (x,)=V?h (x,t)+n(x,h (x,1))+F , (1.2)
has nontrival scaling properties due to the quenched
noise [9-11].

The general feature of the models under study is that
there exists an interplay between the degree of quenched
disorder and the force acting on the interface. For a
small force the interface gets pinned by the disorder.
When the force is increased the interface usually moves
for a while until it is pinned again. There exists a critical
value of the force, say F,, above which the interface
moves with a finite velocity. Below the transition, but
close to it, the correlation length diverges as F —F, tends
to zero.

In a recent paper [7] we showed how a qualitative un-
derstanding of the effects of quenched randomness can be
turned, under stated assumptions, into a complete scaling
theory of one particular model [6] of a self-organized in-
terface depinning. In this paper we return to a more crit-
ical analysis of the basic assumptions of that approach,
and point out which of them have a wider applicability.
In those models for which the assumptions are applicable
one can achieve a rather complete scaling theory.

We begin this discussion in Sec. II, where the notion of
associated processes is explained in a general context.
We consider some delicate issues involving the definition
and the measurement of roughness, and the relationship
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between the cluster roughness and the average properties
of the interface. We propose that the roughness of such a
system can depend on the details of the driving. In Sec.
III the relation between the roughening of the growing
interface and the scaling of the associated processes is
discussed. We relate the scaling properties of the associ-
ated processes to other critical problems like the random
walk and directed percolation that lead to alternative
scaling relations for growth problems with quenched dis-
order. The alternative possibilities are tested against ex-
tensive numerical simulations, and conclusions are
drawn. In Sec. IV we discuss continuous models and
their relation to the discrete versions. As a part of this
development we offer a scaling solution of the Kardar-
Parisi-Zhang (KPZ) model [12] with quenched disorder
and argue that this model is in the same universality class
as the Buldyrev-Sneppen model. In addition we treat the
Edwards-Wilkinson model and compare it to the KPZ
model. We explain why these two models are in two
different universality classes. In Sec. V we consider ex-
tensions to 2+ 1 dimensions, including the roughening in
the random-field Ising model. Section VI offers a sum-
mary and conclusions.

II. ROUGHENING AND ASSOCIATED PROCESSES

For concreteness we start with the discrete model in-
troduced in Ref. [6]. In 1+1 dimensions, the model is
defined with a space coordinate x, x =1,2,...,L, and
with a “height” coordinate A, which is unbounded.
Every lattice point (x, %) is assigned a quenched uncorre-
lated random number f(x,%) in the interval [0,1]. A
discrete interface s (x) is grown from the initial condition
h=0. The interface is updated in two steps. (i) The site
is found with the smallest random number f(x,h(x))
among all the sites in front of the interface. On this site
one unit is added to 4, i.e., A (x)—h(x)+1. (ii) After up-
dating, the neighboring sites y =x*1 are checked for
their local slope |h (y)—h (y£1)|. If this slope is greater
than unity, the height 4 (y) is adjusted by adding one
-unit. The same test is now applied to other sites, until
|A(z)—h(z£1)| =1 for all points z. The last step can re-
sult in an avalanche of adjustments, and is therefore re-
ferred to as such.

The roughness exponent of the interface y was defined
by the scaling of the “width” W,

W=V {[h(x,t)—(h)]*)~L*

(2.1)

where { ) denotes an average over space and members of
the ensemble generated by different realizations of
f(x,h). Equation (2.1) is meant to hold for times ¢ large
compared to some saturation time T,,. Note that this
definition can be extended to situations in which the in-
terface is not a graph by averaging over the multivalued
height functions. A number of groups measured the nu-
merical value of y and there appears to be a consensus
that Y=0.63... . We review first the theoretical frame-
work and then present some comments on this issue.

The connection to directed percolation (DP) was ex-
plained [3,13] as follows. Pick a value of f(x,4) which is
precisely f.=1—p_, where p, is the critical density of the

3403

directed percolation problem. Consider now (see Fig. 1)
the points (x,%) for which f(x,h)= f,. Since f is uni-
form in the interval [0,1], the density of these points is p,,
and therefore they form a connected cluster (solid line in
Fig. 1) which can have dangling bonds which are, howev-
er, directed. We denote this cluster by Cpp(f,.). Consid-
er next the subset of this cluster, which consists of all the
points that belong to the unique connected path with
minimal values of /4 (x) among all uninvaded sites, which
we denote by Bpp(f,) (see Fig. 1). The growing interface
has to identify at some instant of time with a surface
which for every x has a value of A which is smaller by one
unit compared to Bpp(f,.) (points denoted by circles in
Fig. 1). To see this, notice that any point x,4 which is
below this surface has a value of f(x,4) lower than f,,
and will be chosen for growth before any point in
Bpp(f.). The only exceptions are the dangling bonds,
which, however, are going to be circumvented and
covered by avalanches. Thus the interface in Fig. 1 must
identify with Bpp(f,) before proceeding. In the limit
L — o we can also state that the next point to be chosen
will be a point for which f=f_. on Bpp(f,), and later
this interface will be punctured by avalanches.

For any value of f < f, we can identify a directed per-
colation network Cpp(f) that has a finite density of
points p(f), which increases when f gets removed from
f.. Considering a situation that the highest value of the
quenched noise in front of the interface is smaller than
some f, we can define a blocking surface Bpp(f). This
surface is defined as the lowest connected path belonging
to Cpp(f). Evidently, the interface has to identify on its
way with paths removed down one unit in 4 for each and
every such cluster Bpp(f). It was suggested [3,13] that,
although a wide range of values of f are selected during
growth, the scaling of the interface will be dominated by
the largest scales in the system, which are obtained when

) Sites that the interface has to pass through

J— Directed percolation cluster Cdp

- Position of the interface

— The lower hull Bgp

FIG. 1. A typical configuration of the growing interface with
respect to the blocking directed percolation interface Cpp and
the lower hull Bpp. All solid lines pertain to Cpp. The bold
line is Bpp. The interface has to identify with the path denoted
by the dotted sites before it penetrates through Bpp.
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f is not too far from f,.. Then one can use the results for
the transverse and parallel correlation lengths for the
directed percolation problem [14], i.e.,

§]_~ |p_Pc|_1097 1 (2-23)

§|| ~ |P —Pc | =173, (2.2b)
to estimate a roughening exponent through

W~L 1.097/1.733=L0.633 . (2.3)

This is in close agreement with the measured value of y.

There are two crucial assumption that can go wrong in
this argument. The first is that the critical exponents in
Egs. (2.2) really characterize the sizes of directed percola-
tion clusters below the critical point, and not necessarily
the roughening exponent of Bpnp(f,). The second is that
the interface identifies with Bpp(f,.) only infrequently.
Most of the time it identifies with noncritical paths
Bpp(f). In principle this can give rise to changes in the
scaling exponent even if the first problem is absent. This
issue is discussed at some length in Sec. II B. Lastly, it is
possible (and has also been demonstrated) that there exist
correlations between events of growth separated in space
and time, and these may contribute [15] to the roughen-
ing exponent in a way that needs to be understood. The
discussion of these assumptions is facilitated by the intro-
duction of the concept of associated processes.

A. The associated processes and their scaling properties

To be able to examine this issue further, we need to
decompose the growth process into events that have
cleaner scaling properties. These events are the “associ-
ated processes” which were introduced in Ref. [7], and
which we recall now. Suppose that at time ¢ =¢, the
point x,,h(x,) was chosen for growth, and that
f(xg,h(x4))= f,. This implies that f(x,h(x))=f, on
all the interface. Define the f, associated process, denot-
ed as 4 fo(s), as the series of steps in which the points

X1,X,,...,X; were chosen for growth, if the following
conditions are met:

(i) fx)<fo, f(x3)<fo, (2.4a)
(ii) f(xs+1)2f0 . (2.4b)

The following properties of the associated processes
were demonstrated in Ref. [7].

(i) In the limit L — o there do not exist finite associat-
ed processes with f, > f..

(i) The set of points x,,x,, ..., X, together with the
points exposed by avalanches, is simply connected and
compact.

(iii) A consequence of (i) and (ii) is that, given a value of
fo<f., the union of the associated processes A fo(s) is

LR} f(xs)<f0’

.

the lattice x,h. In other words, every value of f, defines
a network in which the strings are given by the blocking
surfaces characterized by f, and the holes in the net are
the associated processes, with points {x;}5—; plus
avalanches. It was argued that this network is not the
same as the network obtained by a directed percolation
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cluster of points with a density p > p,.
(iv) Define K fo(s) to be the distribution of s values in

the union of f, associated processes. We assume that
this distribution has the scaling form

Ky (s)=s""g(s/Af "), (2.5)
where Af =f.— f,, and T and v are scaling exponents.

The f, associated processes, being compact geometri-
cal objects, afford a definition of measurable lengths 7
and width 7. The definition is not unique. The associat-
ed process is bounded by two boundaries; by subtracting
one boundary from another we get a new function 7 (x).
The length r is going to be defined as the length in which
h(x) is larger than zero. The length 7, is defined as the
width (2.1) of the function #(x). One can define r, in a
number of other ways, and crossover effects may lead to
apparently different scaling exponents. We believe that
for sufficiently large associated processes and sufficiently
large systems these crossover effects disappear. The fun-
damental scaling exponent is obtained by measuring the
conditional average width (r l|r”) of all associated pro-
cesses having a given length r:

(rler)~rf|(° , (2.6)
where Y. is not necessarily identical to Y.

It is worthwhile to search for a measurement algorithm
that will expose the existence of X, in this problem. One
way to see this exponent is by examining the scaling
properties which relate the conditional average area
(number of growth steps A plus the number of
avalanches) in the f; associated processes to the length r,
of the process:

<s|r”)~<rl|r“)r“ . (27)

Note that (2.7) is a scaling assumption that needs to be
checked. Using (2.6) in Eq. (2.7) one finds

1+
<s|r“ )~r|| Xe .

We checked that (2.8) is reasonably supported by the
data. The numerical value of the exponent in (2.8) is
1.62+0.01.

In fact one can measure the roughening exponent in a
surrogate growth process under different rules. In this
process, rather than choosing the minimal value of f for
the next growth one chooses randomly a site among all
the growth sites whose f = f* with f* close to f,.. Next
one performs the usual algorithm of choosing the
minimal f until the f* associated process is completed.
The width is then measured, and again a random site
with f 2> f* is chosen, etc. We performed such a mea-
surement with f*—f.=5X10"% and L =256000 (the
conditions are such that §,~L). The results (see Fig. 2)
are in extremely good agreement with the directed per-
colation exponent Y =0.633+0.002=y,.. This is a
demonstration of the fact that the critical surfaces have
the same statistics as typical directed percolation paths.
In passing we note that direct roughness calculations of
the directed percolation paths that we performed gave in-

(2.8)
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FIG. 2. The scaling of the area of a randomly chosen associ-
ated process with its length. The scaling exponent is observed
to be 1.633. The stars represent the measured values and the
dashed line represents scaling according to the exact scaling
law. In this measurement the system size is L =50000. The
scaling behavior spans four decades.

distinguishable scaling plots from those obtained in this
surrogate process.

In Ref. [7] it was assumed that Y, =x. The rationale of
this assumption was that associated processes with
fo—f. must have a size comparable to L. It was thus
felt that for L large enough the scaling properties of the
growing interface were dominated by the scaling ex-
ponent of the largest associated processes, which are very
close to criticality. One should stress here that if y were
larger than ., different definitions of r, may lead to
different evaluations of y.. Since this problem has not
been carefully discussed in the literature we turn now to a
more detailed discussion.

B. The interface roughness vs the
roughness of the associated processes

In this subsection we will argue theoretically that y, is
a lower bound on the value of y. The main point of
difficulty is that most of the measurements of the width
are done after choosing an f value that can be rather far
from f_.. One needs, therefore, to take into account non-
critical contributions that may lead to a stable difference
between Y and the directed percolation expected value of
0.633.

To establish a bound, consider now a finite system of
size L and conditional sampling of the interface growth,
where each sampling is done after the completion of an
associated process with f =f*, such that the length scale
&(f*)=2L. Any associated process with f > L will gen-
erate an interface with roughness ., since such a process
wipes out any memory of the initial conditions. We will
argue that there exists a finite fraction of associated pro-
cesses at this value of f whose value of r; is a small frac-
tion of L, say aL, with a of the order of 0.1. Moreover,
we will show that such processes contribute a finite frac-
tion of samples of the width in which y=y,. This will be
the first element in the establishment of the bound.

It will be shown later that the exponent 7 in Eq. (2.5)
takes on values between 1 and 2. Therefore, the ratio R;
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of the number of steps of the associated process whose T
is smaller than aL to the total number of steps is propor-
tional to

(aL)'*Xx _
f s "sds
1

-,

where we used the fact that the dominant contribution to
the integrals comes from the upper limit. Since the
smaller associated processes cannot affect the total
roughness, it is clear that during all the steps included in
them the measured width will scale with y.. The larger
associated processes may well have a different roughness,
say ;. Consider then the weighted measurement of the
width between the two types of processes of sizes smaller
and larger than aL, respectively. They will contribute to
the width the weighted sum

Rs~ ~a(1+)()(—'r+2) , (2.9)

W~R,L*+(1—R,)LY . (2.10)

There are two possibilities: either x; <x. or ¥;>x.. In
the first case ), will be an irrelevant correction to scaling
that will disappear in the limit L — oo. In the other case
X1 will dominate the scaling and x = x.. It is reasonable
to assume that Y, will be larger since the growth for small
f’s is a very correlated process.

This argument indicates that the observed value of y
may depend on the chosen value of f*, since the fraction
R, depends on f*. To test this we measured for one
value of L the dependence of the measured W on f*, by
sampling the measurement on the completion of f* asso-
ciated processes. The results are shown in Fig. 3. There
is a systematic decrease in the observed values of W,
which is a strong indication that Y, differs from y,. Asa
further test of these arguments we simulated this model
in the range of L between 10° and 2.5X 10°. To avoid far
from critical contributions we conditioned our measure-
ments of W to times after the completion of an associated
process with f > f*, where |f*—f,.|=0.00176. The re-
sults are shown in Fig. 4 in a double logarithmic plot.
We show W?2/L e a5 a function of L. Note that this
measurement calls for an accurate knowledge of f,. This

1.50x10° f ' ' T

1.40x10° £ — ;

1.30x10° F - ]
w? 2 ]
1.20x10°

T
1

1.10x10°F E

1.00x10°F . . . . . ]
0.000 0.005 0.010 0.015 0.020 0.025 0.030
Af

FIG. 3. The square of the width of the interface as a function
of Af. One can observe a decrease of the width with the de-
crease of f.
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FIG. 4. The width of the interface as a function of the system
size L for Af=0.002. The graph is given in two versions, with
and without a correction to scaling because of the shift in the
critical value f, with L. The circles represent values without
shifts in f,. Squares are data in which the shift is included. The
diamonds represent the exact scaling law with a scaling ex-
ponent 1.32. One can observe that the effective scaling ex-

ponent is higher than the expected value of 1.266.

has been taken into account in Fig. 4 by estimating f.(L)
from independent measurements. The exponent that is
estimated from the results shown in Fig. 1 is
x¥=0.665£0.005, which is significantly different from
X.=0.633. Though it is hard to estimate correctly be-
cause of measurement problems it seems that the ex-
ponent is even larger for larger systems.

We conclude that the roughness of the advancing sur-
face is indeed larger than the roughness of the critical
pinned surfaces. It is interesting to note that an experi-
ment on advancing ink on an interface showed a different
roughness for the pinned surfaces than for the advancing
one (y=0.7£0.04). This is indicated by the previous dis-
cussion. We believe that the details of the dynamics of the
interface can be important.

Lastly, we observe that measurements of the interface
roughening exponent are influenced by another effect that
to us seemed surprising. This has to do with the fact that
the average over the growing interfaces when the bound-
ary conditions are free is not flat. By a “free boundary
condition” we mean that avalanches to positions smaller
than x=1 and larger than x =L are not performed, but
the growth at x=1 and L is normal. Consider the quan-
tity h(x,t)—h(1,2). Average this quantity over time,
(h(x,t)—h(1,t)). One could guess that this average
would vanish. This is not the case, as can be seen in Fig.
5. The average width scales with system size with an ex-
ponent ¥ =0.68+0.05. This indicates the existence of
nonvanishing finite-size effects in this system which might
modify the measurements of the roughness exponent
from correlation functions; see Sec. V for a discussion of
related problems. This effect might modify distributions
and affect the statistics.

C. The effect of the rules of driving

The discussion in Sec. II B underlines the fact that non-
critical effects may lead to roughening exponents that
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FIG. 5. The average profile of the interface in rescaled coor-
dinates. The position % (x) of the interface is scaled by L% and
the coordinate by L, and many interfaces are averaged. The
average interface is not flat, but has a width which scales with L
with an exponent 0.68+0.05. Shown are measurements for sys-
tem sizes L =16 000 and 128 000.

differ from the exponent of the critical interface. These
noncritical effects may well depend on the rules of driving
the interface. It is important therefore to understand the
various rules of driving and their relation to physical pro-
cedures in experimental realizations of these processes.

In laboratory experiments one can choose constant
current or constant driving. A constant current is real-
ized by adjusting dynamically the driving force so that
the pointwise volume invaded by the growing interface is
fixed. In the previous section we discussed the case of
constant current in the limit of infinitesimal current. In
other words, only one point is activated per unit time. If
we opted for constant driving, like constant pressure in
the physical realization, many points would be invaded
simultaneously. The constant infinitesimal current was
realized in the previous section by the nonlocal search for
an optimal site. This nonlocal search resulted in large
fluctuations in the chosen value of the force f. These
large fluctuations may result in stable deviations from the
critical roughening exponent. On the other hand, if one
chose a constant driving mechanism one would always be
stopped by a critical surface when the force was exactly
critical. In such a case y should assume the precise value
of x¥.. On the other hand, in the case of constant super-
critical force one would find large fluctuations in the
current even in close to critical conditions. These large
fluctuations may lead to similar deviations in . These
supercritical problems, including the finite correlation
length that appears in such conditions, will be discussed
in greater detail in the context of the continuous models
below.

There exist additional rules that one can follow [3,5],
and the aim of this subsection is to indicate that one
needs to assess the details of the noncritical contribu-
tions.

III. SCALING RELATIONS

The basic scaling properties of the associated processes
are given by the exponents in Eq. (2.5). We want to
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derive scaling relations that connect the exponents v, T,
and )}. In doing this we need to think about the nature of
the network defined by the boundaries of the associated
processes. It was explained in Ref. [7] that this network
is not the same as the network of directed percolation
which is obtained by eliminating all the dangling bonds
from a directed percolation supercritical cluster. The
basic reason for the difference stems from the rule of
avalanches that eliminates potential boundaries in the
network; see Fig. 2 of Ref. [7]. Accordingly, the scaling
exponents that define the sizes of the associated processes
may or may not be the same as the exponents that
characterize the sizes of the holes of the directed percola-
tion network. One way to think about the growing inter-
face is as a random walk on a directed percolation net-
work. The blocking surface Bpp(f) is a subset of the
directed percolation network Cpp(f). At each node of
Cpp(f) there is a random choice whether the interface
continues upwards or downwards, depending on the
values of f on the sites of Cpp(f). If we can indeed think
about the interface as a random walk on the directed per-
colation network, this implies different scaling exponents
for the associated processes. There are thus two alterna-
tive fundamental assumptions that lead to different scal-
ing relations. One fundamental assumption is to simply
state that v in Eq. (2.5) is the same exponent as the one
that determines the correlation length in the directed per-
colation problem [16]. This exponent is obtained by say-
ing that

s=E&~ lp—p, |(71:097-1.733)

(directed percolation) . (3.1)

Another possibility to proceed stems from the fact that
the boundaries of any given associated process are a
Hurst random walk with the measured Hurst exponent
X.- Accordingly, one can make a different fundamental
assumption [7], i.e., that the distribution of r| is identical
to the distribution of intervals of return to the origin of a
Hurst walk with exponent y.. This assumption yields
different scaling relations from those implied by (3.1).
We need to examine the two options, since the numerics
does not appear to favor strongly either one. Both ap-
proaches share a number of scaling relations that are in-
dependent of the fundamental assumption. We derive
these first.

A. General scaling relations

To derive the general relations we need two additional
scaling exponents. Introduce the distributions of r|,
denoted as K fo(r“ ). We can write K fo(r” ), in correspon-

dence with (2.5), in the scaling form

=7 il
Kplr)=ry g |——= 32
In Ref. [7] it was shown that 7, and v/ are related:

In addition one has the trivial relationship
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v=v(1+x,), (3.4)

. 1+x
which follows from s =rr, ~r,

lation that stems from this is
7 +X.
T=—_.
1+,

¢. Another scaling re-

(3.5)

Last, we want to derive the average size of an associated
process, which defines the exponent y:

(slfo)~Af77. (3.6)
From (2.5)
y=v(2—1). (3.7)

At this point the discussion bifurcates depending on
the fundamental assumption. If one assumes that v and
v are determined by the directed percolation problem,
then 7 is determined from the knowledge of .. On the
other hand, if one assumes a knowledge of 7, one can
determine v. We describe now the two routes.

B. The two alternatives

Consider first the random-walk option. The probabili-
ty of a Hurst random wlalk to return to the origin in an
interval R scales like R~ . Accordingly, the mean in-
terval size (7| ) scales like (r,)

(r”>~RXc . (3.8)
Using Egs. (3.2) and (3.8) we see that
Xe R —o
R fD ry rdr, . (3.9
This determines 7 and y as
=2 X Y=2. (3.10)

Thus if we accept that Y, =0.633 we expect from this ap-
proach that 7,=1.367. Equations (3.3)-(3.5) furnish then
numerical values for 7 and v.

Next consider the directed percolation option. In this
case we use Eq. (3.3) to predict 7=2—1/v,=1.423.
The difference in the numerical value of 7 will translate
to different predictions for all the other exponents.

C. Measurements

Not having a way to choose theoretically between
these two options, we attempted to distinguish between
the predictions using numerical simulations. In our
simulations we speeded up the calculations compared to
the standard algorithm in order to achieve good statistics
in large systems. The idea of the speedup is that instead
of searching in every growth step for a global minimum
of f we choose a certain f <f, and grow all the sites
whose f are smaller than f, in parallel. This process
generates f, associated processes. Although we lose the
information about associated processes with lower values
of f we speed up the simulations by factors of up to 1000.

As noted, the difference in 7, translates to differences in
the other exponents. For example, the value of = is
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2/(1+x.,)=1.225 in the random-walk option but
7=1.259 in the directed percolation option. In simula-
tions (see Fig. 6) we got 7=1.2451+0.003. In addition we
measured the average cluster size. This is easily done by
measuring the frequency of finding different values of f.
Measurements for a system of size 256000 and 3 X 10!}
growth events gave ¥ =2.03+0.03. The prediction for
this exponent is ¥ =2 for the random-walk option and
v =2.09 for the directed percolation exponents. Conse-
quently, the numerical results disagree in a similar
manner with the predictions of the two approaches out-
lined above. It is possible that the strong finite-size
effects discussed before (related to the existence of an
average slope) affect the results in such a way that it is
impossible to see clean scaling according to either ap-
proach.

As noted, the union of f|, associated processes is not
equivalent to a directed percolation network. Therefore
we cannot assume that the exponent v is given by the
latter as was suggested in Refs. [13,16]. To calculate the
exponent v within the random-walk option we use Eq.
(3.8) in Egs. (3.3)-(3.5) and obtain

v=(1+x,)/X. . (3.11)

This value of v is lower than the corresponding directed
percolation value. This fact poses a theoretical problem
for the random-walk option. The size of the holes in the
growth network of the union of the associated processes
is larger than the size of the holes of the directed percola-
tion cluster. It is thus impossible to have a value of v for
our network that is lower than the size v for the holes of
the directed percolation network. However, the value of
v in directed percolation is referred to the size of the per-
colation clusters and not of the holes in them. It is not
known whether the latter scale like the former, and it is
possible that the value of v for the holes in the clusters is
smaller than v for the clusters themselves.

We tried to assess this issue numerically. Unfortunate-
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FIG. 6. A log-log plot of the distribution of areas of associat-
ed processes in the Buldyrev-Sneppen model. The distribution
is rescaled by s” where 7=1.244 (stars) and 7=1.259 (dia-
monds). The former is the “best” fit as judged by flatness of the
curve at large values of s, and the latter is the prediction of the
directed percolation option. The horizontal lines are an aid to
the eye to test for a flat region.
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ly it turned out that the measurement of v for the holes is
inconclusive. We cannot conclude on the basis of numer-
ics which of the two options is true for the Buldyrev-
Sneppen model, and it is possible that the final truth lies
elsewhere. We will see that in the context of other mod-
els the random-walk option seems in excellent agreement
with the data.

IV. MODELS IN CONTINUOUS SPACE AND TIME

In this section we show that much of the territory
covered in Secs. II and III can be readily used to make
progress in understanding the scaling properties of sto-
chastic partial differential equations (PDE’s) that describe
interface roughening. There are again two types of
dynamical laws that we analyze. The first type, which
will be called “constant drive,” is represented by equa-
tions of motion of the type

9,h (x,t)=F (0, h(x,t))+n(x,h(x,t))+F, 4.1)

where F,;(9,h(x,t)) is some (generally nonlinear) func-
tion of the spatial derivatives 9,4 (x,t), 1 represents the
effect of the quenched disorder, and F is some force that
pushes the interface 4 (x,?). In our thinking 7 is chosen
randomly from a reasonably bounded interval (say, uni-
form on [0,1]) and with some short spatial correlation
length denoted as £,. The second type of dynamical laws
fixes the rate of advance of the interface 9,4 (x,?); the in-
terface is moved at a point which maximizes (or mini-
mizes) an internal field F;;; that can be computed as

Fi . =F (0, h(x,))+n(x,h(x,1)) .

We refer to this type of models as ‘“‘constant current”
models. Note that there exists an inherent difficulty in
realizing such a process due to the continuity of space
and of the values taken by F,,. In practice all PDE’s are
simulated on the machine in discrete space, but our
definition also calls for a discrete advance of the inter-
face. In fact the PDE (4.1) should be considered as short-
hand for the above lattice dynamics, and the continuum
limit is not entirely well defined. We believe that as long
as the discretization is made on length scales smaller than
&, the results are representative of the continuous pro-
cess.

The two types of dynamical laws have common
features that are very reminiscent of the discrete models.
There are subtle differences that we expose first in the
constant flux models.

(i) There exists a critical value of F;,, denoted F_,
defined as the minimum value of & (9,k(x,t))
+n(x,h (x,t)) which is found during growth. There ex-
ists paths in x-h space for which F; (x,h(x))<F,. The
collection of these paths constitutes a network N, F,- Dur-

ing growth the interface must overlap with subsets of
Ng..

(ii) Every path can be characterized by the largest
value of F;,,, say F*, which is found on it. We shall refer
to such a path as an F* path. The collection of all the F*

paths forms a network denoted as C.4. During growth
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an interface will identify with an F* path. Next the
growth process will cover a compact region of x-h space
in which there is no point with F; , < F* before the inter-
face identifies again with an F* path. These compact
growth regions are termed “F* associated processes.”
For F*>F, we can consider all the paths for which
Fine <F*, and these define the network N, of which

Cp+ is necessarily a subset. If we denote by s the number

of sites covered in an associated process, the distribution
of s values in the union of F* associated processes,
KF.(s), scales as in Eq. (2.5), i.e., KF*(s)=s“"g(s/
AF™") where AF =F*—F,.

(iii) The network CFC’ which obtains for F;  =F,, is

critical in the sense that it is characterized by two diver-
gent correlation lengths £, and §; which are the maximal
length and width r, and r| of the associated processes.
For F;, close to F, these correlation lengths are finite,
and depend on |F,,—F,| as & ~|F,,—F,] * and
&~ |Fip—F,| "I. As we argued in Sec. II, the roughen-
ing exponent of the interface is bounded from below by

the exponent that is obtained from the relation between
&, and §, which is

v, /v ;"
§1~§|]l “=§JIYI .

This relation defines the first scaling relation for the asso-
ciated processes . =v,/v,.

For the first type of model the language changes slight-
ly, but the constructs of the theory remain. First, there
exists an identical critical value of F, F,, such that for
every F=<F, there exist paths h(x) for which
9,h (x,t)=0. For F >F, there are no such paths. These
paths define a network N that depends on the value of F,
which divides the x-k space into nonoverlapping regions.
During the growth process, which is achieved by increas-
ing F infinitesimally, the interface moves from one path
in the subset N to a path in the subset Ny ;4 by filling
compactly regions of the x-h space. These regions are the
analogs of the associated processes of the constant flux
models, and they have the same scaling properties in
|F —F,|. The constant flux models organize themselves
into a critical state, whereas in the first type of models
the correlation length depends on F, and only at F_ is
there a second order phase transition with divergent
correlations.

The universal scaling relations in the continuous mod-
els do not change with respect to Egs. (3.3)-(3.5). As be-
fore, one needs one additional relation between the scal-
ing exponents in order to close the equations. In general,
the continuous models do not necessarily belong to the
directed percolation class, and we choose to follow here
the random-walk alternative. There is one important
difference from the discussion in Sec. III, which is the
possibility that y, is larger than unity. [This’is the situa-
tion, for example, in the Edwards-Wilkinson (EW) model
as discussed below.] The difference appears first when we
estimate the number of returns to the origin N(R) in an
interval of length R:

N(R)~fer_Xdr~R‘_X ify<1,

(4.2)

(4.3)
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N(R)~1 if x>1. 4.4)

The mean interval size (r, |F) scales like R X or like R for
x <1 and for y>1, respectively. Using Eq. (3.8) we
determine 7, as before, 7,=2—x. For y>1 we find
7,=1. We can thus write the general relation which per-
tains for any value of Y,

. 4.5)

7=max {1 2

T 1+yx

The numerical value of y is important also in the rela-

tion between v and Y. Using Egs. (3.2)-(3.4) together
with the value of 7 found before we derive

v=min{(1+x),(1+x)/x} . (4.6)

A. Examples

To see the generality of this class, we consider now a
few examples. The first is the Edwards-Wilkinson (EW)
model [4,8]

a,h(x,t)=6§h(x,t)+7](x,h(x,t))+F . 4.7)

In discrete notation, defining A;,=h(x;)—h(x;_,), the
network Cp is obtained from the union of the paths 4 (x;)
that satisfy

A=A =—n(x;,h(x))—F, (4.8)

together with the boundary conditions. Such a path
blocks the growth with a given F: consider an interface
that touches in at least one point, say x j»a member of Cg.
Denote the slopes of the path belonging to Cy by A? and
A?H, and the slopes belonging to the interface by A; and
1 An  inspection shows that A;—A;,,
+n(x;,h (x;))+F is necessarily negative, and therefore
h(x;) cannot grow. Notice that the condition for sta-
tionarity implies that A; can be unbounded. This is in
contrast with the next model that we discuss below.

Numerical simulations of this model [11] in which the
interface is advanced by running the system at F=F,
have found a roughening exponent y=1.25+0.02. We
have run this model according to the second type of algo-
rithms searching the maximal value of F,,, and found the
same value of y. The fact that y > 1 is a sign that indeed
the slopes are unbounded, and scale with L to a positive
exponent which is larger than 0.25. Using the above re-
sults we predict that 7=1, and v=2.25+0.02. From Eq.
(3.7) we find y=2.251+0.02. These predictions are easy
to check numerically, and are confirmed in Fig. 7.

The same model has been analyzed theoretically in
Ref. [10], with the prediction that in 1+1 dimensions
x=1 and v|=1. These predictions are not borne out by
the simulations or by our scaling relations. In our nota-
tion one of the scaling relations of Ref. [10] is
v,=1/(2—x), which is in disagreement with our scaling
relation vj=min{1/x,1} which in the present case is
v,=1.

: The next example is the KPZ model with quenched
disorder [12],
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FIG. 7. (a) The size distribution of the associated processes
for the EW model multiplied by the size. The flatness of the
plot means that 7=1. (b) A histogram of local field values
selected at growth sites for the EW model divided by
|F —F,|"%. The flatness indicates that ¥ =2.25; see Ref. [7].

3,h (x,t)=02h (x,t)+A|d, h (x,1)|?

+xn(x,h(x,8))+F . 4.9)

By running this model according to the second type of
rules we discovered that this system belongs to the
universality class of the Sneppen-Buldyrev model,

31.6

Log(W)

700.0 1000.0
Log(L)
FIG. 8. A log-log plot of the interface width W vs the system

size L in the KPZ model with quenched disorder. The line has
a slope of 0.63.
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Xx~0.63, and the blocking surfaces are of the directed
percolation type (see Fig. 8). To understand why this sys-
tem is in a different universality class compared to Eq.
(4.7) we can write again (4.9) in discrete notation, and
find that the variables A; are now bounded. The require-
ment for a blocking surface is

MA;+A; P SA; A +n;+F .

Seeing this inequality as a quadratic inequality for A; in
terms of A; ., (or vice versa), the condition for the ex-
istence of a real solution is that the discriminant will be
positive. This is equivalent to the conditions

8A; 2 —1/A+4n;+4F, 8A;,=1/A—4n;—4F (4.10)

at every site. Since 7); is bounded the blocking surfaces
have bounded slopes, explaining why they could belong
to the directed percolation universality class. In Fig. 8
we show a measurement of Y. It should be noted that
(4.9) is in the same universality class as the Sneppen-
Buldyrev model irrespective of the mode of driving, i.e.,
with a constant critical force or by selecting a minimally
stable site.

Note that when A—0 we should recapture the EW
model (4.7) and indeed the slopes may become unbound-
ed as (4.10) indicates. It is interesting to measure the
mean slope in this model as a function of A. Such a mea-
surement is reported in Fig. 9, with the result that the
mean slope depends on A like A™#, with ©=0.26+0.025.
This exponent is significantly smaller than the naive pre-
diction of Eq. (4.10). To understand why the slope is con-
siderably smaller we can average Eq. (4.9) over all the
sites of a blocking interface. Denoting such an average
by ( ). we write

A3 (x, )2 = m(x,h (x,0))+F), . 4.11)

The right-hand side (RHS) has a dependence on A and it
goes smoothly to zero for the critical surfaces of the EW
model. One can see this immediately from Eq. (4.8) aver-
aged over a blocking surface. We can therefore write

(n(x,h (x,)+F), ~CA® (4.12)

where a>0. Accordingly we get immediately a tighter
bound

|8,k (x,0]) <\%» :
which is realized when a=0. We did not succeed in
deriving theoretically the exponent p since we could not
estimate a from first principles. The reason for the
difficulty is that it appears that the two contributions on
the LHS of (4.12) reach their EW limit with different
leading exponents.

(4.13)

B. The effect of tilting the interface

In Ref. [17] simulations that pertain to the effect of in-
troducing boundary conditions that produce an average
tilt of the interface were presented. The mean slope is
denoted in that work as m, and it is interesting to exam-
ine the results of these simulations in light of the general
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approach developed here (and see also Ref. [18]).

The existence of an average tilt influences the proper-
ties of the network of the associated processes.
Remember that without a tilt every hole in the network
has two scales 7, and r| that characterize its height and
width, respectively. The parameter m should be com-
pared for each hole in the networlilto the ratio r, /7
which from Eq. (2.6) scales like r{ . This comparison
introduces a new typical scale which is obtained from
finding that slope, say (7, /r|)*, which equals the external
tilt m:

(ry/r)*=m . (4.14)

The value of r, for which (4.14) is satisfied is the scale
£*(m) which is

E¥(m)=m!V/x"D (4.15)

Obviously no holes of length larger than £*(m) may exist
in such an experiment. This means that the threshold of
depinning is reduced compared to the untilted case. The
amount of reduction AF* is estimated from equating the
correlation length of the untilted network with £*(m).
Using §,~AF "I we get from equating the scales

l/v”(x—l)
m .

AF* ~ (4.16)

The prediction is then that the exponent appearing in
(4.16) is about 1.57. We tested this prediction numerical-
ly and found satisfactory agreement.

These considerations allow also an evaluation of the
mean velocity v of propagation of the interface for the
constant drive models at the critical point F =F,. The
way to think about it is as follows. Define as the funda-
mental unit of time the time Atz that is required to fill a
hole of size £,£,. In order to advance the interface by an
amount §, we need to fill L /£, individual holes. Howev-
er, all these holes are being filled simultaneously in the
constant drive algorithm. Accordingly, we advance the
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whole interface by &, during a time that is inversely pro-
portional to §;. Accordingly we can estimate

v~CE /E~AF '=AF° . 4.17)

This result was obtained first in Ref. [13] using similar ar-
guments. We can proceed now to use it to estimate the
dependence of the velocity on the imposed tilt m.

At the critical point there is one typical scale, i.e.,
£*(m). Using (4.17) with AF read from (4.16) we obtain

v~m, (4.18)

where we have used v,=vy. This prediction was
checked and the good agreement is shown in Fig. 10.

The prediction of Eq. (4.18) pertains to the critical con-
dition AF=0. In supercritical conditions AF >0 the
dependence on m is nonlinear [17]. To understand this
phenomenon we generalize (4.17) to the finite-tilt situa-
tion by introducing the scaling function g (x) through the
relation

v=AF%(m/AF®) . (4.19)
The properties of g (x) are that
1, x—0
glx)~ (4.20)

X, X—> o .

The symmetry of the problem to the transformation
m-— —m requires that g(x) will attain a minimum at
x=0. If we assume that g(x) is smooth in x we predict
that the x dependence for small x is generically quadratic
(which is not obvious from first principles). We thus ex-
pect that for supercritical conditions

v~AFO+AF%m? . (4.21)

The simulations of Ref. [17] seem to be in accord with
this dependence. We note that in Ref. [17] it was pro-
posed that the quadratic dependence on m as exhibited in
(4.21) is a result of the quadratic term |9, A (x,1)]? in the
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FIG. 10. The linear dependence of the ve-
locity on the tilt m, shown for system size
L =100000. Because of finite-size effects there
is no current below the lowest point.

WOOO: T T T T T T T T :
1.00 |- E
2 L ]
S
3 i J
(]
> [ .
0.10 E
0.01 . . R
0.01 0.10

m (tilt)

equation of motion. Our argument shows that it is sim-
ply a consequence of reflection symmetry, and that it can-
not in general be tied to the quadratic term in the equa-
tion. It should also be added at this point that one
should not expect such a quadratic m dependence in the
EW model simply because small tilts are irrelevant in
that case in which y=1.25. In a model in which y>1
small tilts are irrelevant perturbations and their effect is
negligible.

Finally we note that the growth process in a tilted situ-
ation gains new features on scales larger than £*(m). On
such large scales the connection to the directed percola-
tion problem is totally destroyed, and the growth occurs
as a series of uncorrelated downward avalanches with
trivial dynamical exponents. One expects that on such a
large scale the roughness will cross over to the random-
walk universality class of Y =1.

V. MODELS IN 2+1 DIMENSIONS

In 2+1 or in higher dimensions, one exponent is surely
not sufficient to define all the scaling properties. The
random-walk argument cannot be used. The difficulty is
in the argument that led to Eq. (3.10). That equation is a
reflection of the fact that when we cut in 1+ 1 dimensions
a random path of fractal dimension 1+ )y we get a Cantor
set of points of dimension y. This can be used to estimate
the number of points in an interval and therefore of the
mean distance between the points as executed above. In
contrast, in 2+ 1 dimensions we have a surface of dimen-
sion 2+, but when we cut it we get islands whose perim-
eter may have a dimension of 1+ )y, but whose area can-
not be deduced from the dimension of the mother sur-
face. Even worse, generically the distribution of areas of
islands in cuts is not characterized by a single power law.
There is usually a large continent among the islands, and
the area of the continent may be dominant in the distri-
bution. The subject of random cuts of random surfaces is
a rather involved one, and we cannot do justice to it in
the present paper.

Fortunately, our simulations indicate that the distribu-
tion of associated processes is critical. A distribution

Ko«(M=V""g(V/Af™") (5.1)
is available, where V is now the volume of the F* associ-
ated process. As before we define an index y by
(V) g+~ Af 7. The full characterization of the growth

process in terms of geometry and dynamics calls now for
two independent exponents, say ¥ and 7. In making this
statement we make the nontrivial assumption that the as-
sociated processes are still compact. This property is
supported by simulations in 2+1 dimensions, but may
well be lost in higher dimensions.

Since the set C o+ is made now of surfaces rather than
lines, every associated process is characterized by an area
A and height 7,. We have now V'~ Ar, and r, ~ 4X"2.
Therefore

K (A)=4 "g(d/Af "), (5.2)
where 7, =7(2+x)/2+x/2 and v ,=2v/(2+)). (Note
that if we want to define a length r| we can use r;|=Vv" 4
which defines vy=v ,/2.) From considerations identical
to those leading to Egs. (3.3) and (3.7) we find

1=VA(2_TA ), 7’2'\’(2“7) . (5.3)

A. Examples

The first example that we discuss is the Buldyrev-
Sneppen model [19] in 2+ 1 dimensions. The exponents
X and 7 were measured in Ref. [19] and by us. The re-
sults are ¥=0.511+0.03, and 7=1.46+0.02. Using Eq.
(5.3) we can predict ¥ =1.53 and v|=1.15. These predic-
tions were confirmed by simulations in Ref. [19] and by
us. Note that in Ref. [19] the measured result for vy is in
close agreement with these numbers, whereas the result
for v seems unreasonably small, y =1.41.

Next we discuss the random-field Ising model (RFIM)



52 INTERFACE ROUGHENING IN SYSTEMS WITH QUENCHED DISORDER

[20]. The dynamics of this model differs from Eq. (4.1).
The Hamiltonian is

H=3JS,S,+ 3q(r)S,+H3S, , (5.4)

and r is a coordinate in three-space that we denote as
(x,z). The sum on r,r’ is taken on nearest neighbors, and
7(r) is a random local field taken from a bound distribu-
tion of width A. One begins with initial conditions with
H =— o, and the row of spins at z=0 is chosen with
S,=1, whereas all the other spins are —1. The value of
the field H is raised now quasistatically. A spin S, is
flipped to 1 if the local field

H, =3 JS,+n(r)+H (5.5)

exceeds zero, and if r is a nearest neighbor site to the in-
terface. It is known [20] that for J /A <<1 the interface
assumes the geometry of an invasion percolation cluster,
whereas for J/A>>1 it remains flat. There exist inter-
mediate values of J/A for which the interface becomes
self-affine.

In Ref. [20] the roughening exponent ¥ was measured
through the scaling of the standard deviation of the inter-
face h (x) as a function of the coordinate x for a given to-
tal length L of the system. We remark that although the
interface is self-affine it is not a graph. The interface has
overhangs which ruin the possibility of estimating Y from
such measurements. To understand the difficulty, imag-
ine that we want to extract the scaling exponent from the
measurement of correlation functions. The existence of
overhangs leads to a wrong estimate of the roughening
exponent when measured from correlation functions. As
an example consider an ““interface” in the shape of a unit
step function at x=0. Computing the correlation
([h(x+r)—h(x)]*) we get a contribution
h(x +r)—h(x)=0 whenever x and x +r are on the same
side of the step, and a contribution A(x +r)—h(x)=1
whenever x and x +r are on the two sides of the step.
Therefore {[h(x +r)—h(x)]*) ~r. This is an example
of a wrong identification of y =4 that would result from
steps. Overhangs are smoothed in interface calculations
as steps, and therefore correlations cannot be used to esti-
mate Y. A similar problem will appear when the stan-
dard deviation as a function of x is measured, since the
scale of the overhangs will contaminate the scaling
behavior. The scale of the overhangs as a function of sys-
tem size changes with an exponent that in general is
nonzero and different from Y.

A practical way to avoid being misled is to compute
higher order structure functions. Overhangs and steps
may lead to fake multiscaling. In the previous example
all the higher order structure functions
([A(x +r)—h(x)]") will exhibit the same fake scaling
exponent Y =1 instead of an exponent that is linear in n.
The sign of trouble will be observed in the inner cutoff of
the scaling behavior. The size of the typical overhang (or
step) scales with the size of the system. Since the small
scale behavior is dominated by the steps, the smallest ob-
served scale in the scaling regime will grow with the sys-
tem size. If, on the contrary, a measurement of higher
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FIG. 11. A log-log plot of the interface width W vs system
size L for the random-field Ising model in 2+ 1 dimensions.
The line has a slope of 0.85.

order structure functions results in proper scaling ex-
ponents which are simple multiples of the first order ex-
ponent, overhangs are irrelevant. We remark that the
EW model with quenched disorder is another example
where the correlation function method will fail to mea-
sure the correct exponent Y =1.25, for similar reasons.
Since in that case the slopes diverge with L with an ex-
ponent, say ¥, the correlations display an apparent ex-
ponent (¥ —1) instead of the true roughness exponent.

We measured Y from the width of the interface
W ~LX, and for J /A=2.8. We found y=0.8510.02; see
Fig. 11. The scale of the overhangs changes like L°%2,
This rationalized the measurement in Ref. [5(a)] of an ap-
parent exponent of 2. The exponents y, 7,, and v were
properly measured in Ref. [5] and we repeated their mea-
surements. Reference [5] found 7,=1.28%0.05,
¥=1.71%0.1, and v;=0.75%0.05. The scaling relations
that we presented fitted the data very well, since we pre-
dict y=1.71 and v;=0.72. We remark that the scaling
relations offered in Ref. [20] agree with ours only when
x¥ =1, which is not the usual case. In fact, Refs. [5] and
[20] assumed that the scaling of the interface differs from
the scaling of the associated processes, and that the
roughness of the interface is smaller than the roughness
of the associated processes. As we explained in Sec. II B
this is not possible.

We have measured numerically the scaling of the asso-
ciated processes in this model and found that they have a
x exponent which is very close to the exponent of the in-
terface. This is another strong indication that the
relevant roughness definition in this model is inherited
from the width of the interface and not from the proper-
ties of the correlation functions.

VI. SUMMARY

In summary, we showed that the scaling relations that
were derived in Ref. [7] have a much wider applicability
than anticipated before. It appears that one can offer a
unified framework to discuss the scaling properties of
moving interfaces in a wide variety of models with
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quenched disorder. On the other hand, the model in
which the scaling relations were originally derived (the
Buldyrev-Sneppen model) shows stubborn deviations
from the predictions of the scaling relations, indepen-
dently of the choice of the random-walk or the direction
percolation options. The deviations are small, but it is
possible that they indicate something deep. It is also pos-
sible however that the model is plagued with corrections
to scaling as explained in Secs. II and III.

In all the other models discussed above the scaling re-

lations seem to agree very well with the results of numeri-
cal simulations.
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